Ela New Results on Nonsingular Power Lcm Matrices

نویسنده

  • JIXIANG WAN
چکیده

Let e and n be positive integers and S = {x1, . . . , xn} be a set of n distinct positive integers. The n × n matrix having eth power [xi, xj ] of the least common multiple of xi and xj as its (i, j)-entry is called the eth power least common multiple (LCM) matrix on S, denoted by ([S]). The set S is said to be gcd closed (respectively, lcm closed) if (xi, xj) ∈ S (respectively, [xi, xj ] ∈ S) for all 1 ≤ i, j ≤ n. In 2004, Shaofang Hong showed that the power LCM matrix ([S]) is nonsingular if S is a gcd-closed set such that each element of S holds no more than two distinct two prime factors. In this paper, this result is improved by showing that if S is a gcd-closed set such that every element of S contains at most two distinct prime factors or is of the form pqr with p, q and r being distinct primes and 1 ≤ l ≤ 4 being an integer, then except for the case that e = 1 and 270, 520, 810, 1040 ∈ S, the power LCM matrix ([S]) on S is nonsingular. This gives an evidence to a conjecture of Hong raised in 2002. For the lcm-closed case, similar results are established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New results on nonsingular power LCM matrices

Let e and n be positive integers and S = {x1, . . . , xn} be a set of n distinct positive integers. The n × n matrix having eth power [xi, xj ] of the least common multiple of xi and xj as its (i, j)-entry is called the eth power least common multiple (LCM) matrix on S, denoted by ([S]). The set S is said to be gcd closed (respectively, lcm closed) if (xi, xj) ∈ S (respectively, [xi, xj ] ∈ S) ...

متن کامل

Ela an Analysis of Gcd and Lcm Matrices via the Ldl -factorization∗

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers such that gcd(xi, xj) ∈ S for 1 ≤ i, j ≤ n. Such a set is called GCD-closed. In 1875/1876, H.J.S. Smith showed that, if the set S is “factor-closed”, then the determinant of the matrix eij = gcd(xi, xj) is det(E) = ∏n m=1 φ(xm), where φ denotes Euler’s Phi-function. Since the early 1990’s there has been a rebirth of interest in...

متن کامل

Ela Inequalities for the Minimum Eigenvalue of M-matrices∗

Let A be a nonsingular M -matrix, and τ(A) denote its minimum eigenvalue. Shivakumar et al. [SIAM J. Matrix Anal. Appl., 17(2):298-312, 1996] presented some bounds of τ(A) when A is a weakly chained diagonally dominant M -matrix. The present paper establishes some new bounds of τ(A) for a general nonsingular M -matrix A. Numerical examples show that the results obtained are an improvement over ...

متن کامل

Ela Non - Existence of 5 × 5 Full Ray - Nonsingular Matrices

An n × n complex matrix is full ray-nonsingular if it has no zero entries and every matrix obtained by changing the magnitudes of its entries is nonsingular. It is shown that a 5×5 full ray-nonsingular matrix does not exist. This, combined with earlier results, shows that there exists an n× n full ray-nonsingular matrix if and only if n ≤ 4.

متن کامل

Ela Generalizations of Brauer’s Eigenvalue Localization Theorem

New eigenvalue inclusion regions are given by establishing the necessary and sufficient conditions for two classes of nonsingular matrices, named double α1-matrices and double α2-matrices. These results are generalizations of Brauer’s eigenvalue localization theorem and improvements over the results in [L. Cvetković, V. Kostić, R. Bru, and F. Pedroche. A simple generalization of Geršgorin’s the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014